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Intragenic Inversion of mtDNA: A New Type of Pathogenic Mutation
in a Patient with Mitochondrial Myopathy
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We report an unusual molecular defect in the mitochondrially encoded ND1 subunit of NADH ubiquinone oxi-
doreductase (complex I) in a patient with mitochondrial myopathy and isolated complex I deficiency. The mutation
is an inversion of seven nucleotides within the ND1 gene, which maintains the reading frame. The inversion, which
alters three highly conserved amino acids in the polypeptide, was heteroplasmic in the patient’s muscle but was
not detectable in blood. This is the first report of a pathogenic inversion mutation in human mtDNA.

Introduction

Molecular characterization of mitochondrial encephal-
omyopathies has progressed rapidly, and many patho-
genic mutations have been described (Schon et al. 1997).
Maternal inheritance and multisystemic involvement are
characteristic of mitochondrial disorders associated with
point mutations in mtDNA (DiMauro and Bonilla
1997). Recently, however, we described a sporadic pa-
tient with isolated myopathy and complex I deficiency
due to a nonsense mutation in the ND4 gene of mtDNA
(Andreu et al. 1999c). This finding prompted us to revisit
a patient, reported elsewhere (Bet et al. 1990), with the
same clinical and biochemical phenotype. In this patient,
we found an unusual molecular defect—an inversion of
seven nucleotides within the ND1 gene.

Patient and Methods

Clinical History

This 43-year-old man, originally reported in 1990 (Bet
et al.), had complained, since childhood, of severe ex-
ercise intolerance and myalgia. Morphological and bi-
ochemical studies of muscle showed 40% ragged-red
fibers and a marked reduction of complex I activity
(∼40% of normal). At age 43 years, he still complains
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of exercise intolerance, and a neurological examination
showed mild proximal limb weakness but was otherwise
normal. His family history is noncontributory: his
mother is alive and has always been a very active
woman, and neither of his two siblings complains of
exercise intolerance.

Molecular Genetic Analysis

Muscle DNA was extracted by standard methods. To
sequence the mtDNA genes encoding the seven subunits
of NADH oxidoreductase (ND), we amplified 11 over-
lapping mtDNA fragments spanning all six mtDNA-
encoded ND genes, using a set of primers reported
elsewhere (Rieder et al. 1998). Direct sequencing of
PCR products was performed with an automatic se-
quencer (ABI Prism 310, PE Biosystems), by means of
the manufacturer’s dye terminator cycle sequencing kit.
To determine the proportion of mutant and wild-type
mtDNA, we performed RFLP analysis on mtDNA am-
plified by PCR, using a mismatched forward primer ex-
tending from nucleotide (nt) 3874 to 3901 (Anderson
et al. 1981), but with the T at nt 3899 being replaced
by a G, and a reverse primer extending from nt 4203
to 4180. The mismatch primer creates a restriction site
for the enzyme Fnu4HI (recognition sequence 5′-
GCfNGC-3′) at the 5′ boundary of the inversion;
this site is not present in the wild-type mtDNA. The
PCR fragment was labeled with [a-32P]dATP (3,000
Ci/mmol, Amersham) in the last PCR cycle (Moraes
et al. 1992). The products of the digestion were sepa-
rated by electrophoresis through a 12% nondenaturing
polyacrylamide gel, and the intensities of the labeled
fragments were quantitated with a Phosphor-Imager
(BioRad) and analyzed with appropriate software.
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Figure 1 Detection of the inversion in human mtDNA. A, Elec-
tropherogram of the ND1 gene showing the DNA and deduced amino
acid sequences from a normal subject and from the patient. The 7-bp
complementary inversion (boxed), flanked by the 8-bp inverted repeats
(arrows), are shown. B, Position of the three amino acid changes con-
ceptually encoded by the inversion, and interspecies homology in this
region of the ND1 polypeptide (boxed).

Figure 2 RFLP analysis. A, Map of the relevant region in the
ND1 gene. Fnu4HI cuts the normal PCR-amplified fragment (329 bp,
amplified with primers P) into two fragments of 251 and 78 bp. In
the mutant, a mismatched forward primer (P′) creates a new restriction
site for Fnu4HI that cuts the 78-bp fragment into two fragments of
53 and 25 bp. B, DNA fragments produced by the RFLP analysis,
visualized in a nondenaturing polyacrylamide gel. U, uncut amplified
fragment; F, Fnu4HI digestion. Fragment sizes, in base pairs, are at
right.

Results

We sequenced the PCR-amplified region of mtDNA from
the patient’s muscle containing all seven ND genes (i.e.,
ND1, ND2, ND3, ND4, ND4L, ND5, and ND6). We
found mutations that differed from the “Cambridge”
sequence (Anderson et al. 1981) at four positions:
T3338C, G3423T, T11335C, and A11467G (not
shown). All four were deemed to be neutral polymor-
phisms, because all four were found by others in normal
individuals and were homoplasmic in the patient.

Sequencing of the ND1 region, however, revealed an
inversion of seven nucleotides, located between posi-
tions 3902 and 3908 (fig. 1A). These seven nucleotides
are flanked by two 8-bp inverted repeats. Thus, the
sequence in this region is 5′-AACCCCCTTCGACC
TTGCCGAAGGGGAGT-3′ (inverted target in bold,
flanking inverted repeats underlined) in normal
mtDNA, whereas it is 5′-AACCCCCTTCGGCAAGGT
CGAAGGGGAGT-3′ in the mutated mtDNA. The in-

version causes an in-frame substitution of three amino
acids (D199G, L200K, and A201V) in the ND1 protein
(fig. 1B). RFLP analysis revealed that the mutation was
heteroplasmic (80%) in muscle, but was not detectable
in blood (fig. 2).

Discussion

We report the first example of an inversion of human
mtDNA, in a patient with isolated mitochondrial my-
opathy and complex I deficiency (Bet et al. 1990). The
mutation is 7 bp in length and is flanked by a pair of
8-bp inverted repeats located exactly at the boundaries
of the inversion (see fig. 1A).

We believe, for a number of reasons, that the inver-
sion is pathogenic. First, the mutation is heteroplasmic,
a common feature of pathogenic mtDNA mutations.
Second, the mutation is consistent with the biochemical
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Figure 3 Scenarios of some possible mechanisms by which the inversion in mtDNA could occur. A, Crossing over of double-stranded
DNA; B, DNA-mediated strand invasion; C, RNA-mediated strand invasion; D, DNA-mediated repair. See text for details.

defect in muscle (i.e., isolated complex I deficiency).
Third, the mutation, which converts three consecutive
amino acids from Asp-Leu-Ala at amino acid positions
199-201 to Gly-Lys-Val, involves a highly conserved
region of the ND1 gene (fig. 1B), which has been pos-
tulated to play a role in ubiquinone binding (Zicker-
mann et al. 1998). The replacement of the negatively
charged Asp-199 with Gly (a neutral residue, and a helix
breaker as well), and of the hydrophobic Leu-200 with
a basic Lys residue, would seem particularly deleterious.

Pathogenic mutations in mtDNA restricted to skeletal
muscle are being described with increasing frequency.
They can affect tRNA genes or, more commonly, pro-
tein-coding genes, including genes encoding subunits of
complexes I, III, and IV (Andreu et al. 1998a, 1998b,
1999a, 1999b, 1999c). Patients with mutations in pro-
tein-coding mtDNA genes are often sporadic and almost
always have isolated myopathy, with the mtDNA mu-
tation present only in skeletal muscle. This segregation
pattern of mutant mtDNA could result from the gradual
accumulation of the mutation in postmitotic muscle fi-
bers and from the loss of mutant mtDNA in mitotic cell
populations, such as leukocytes (Bouzidi et al. 1998).
However, studies of muscle cultures from patients har-
boring such mutations failed to detect mutant mtDNA

in myoblasts derived from satellite cells, even at early
passages, which suggests that the mutations may have
arisen de novo in a subgroup of myoblasts during
embryogenesis.

Interestingly, the muscle biopsy from the patient re-
ported in this study showed ragged-red fibers that
stained intensely for cytochrome c oxidase activity
(COX-positive RRF), in contrast with the COX-nega-
tive RRF seen in most patients with mutations in tRNA
genes (DiMauro and Bonilla 1997). The only major
exception to this rule is the MELAS syndrome, in which
RRF are usually COX positive. We have also seen COX-
positive RRF in one patient with exercise intolerance
and a nonsense mutation in the ND4 gene and in pa-
tients harboring pathogenic mutations in the cyto-
chrome b gene (Andreu et al. 1998a, 1998b, 1999a,
1999b, 1999c).

The generation of an inversion at a site flanked by
perfect inverted repeats suggests that it arose via a ho-
mologous recombination event mediated by those re-
peats. The mechanism by which the inversion occurred
is unknown, but a number of scenarios are conceivable
(fig. 3). One possibility is simple crossing over between
the inverted repeats. For example, if the inverted repeats
formed a stem-loop structure (fig. 3A), crossing over
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would invert the sequence in the hairpin. However, this
mechanism is unlikely, owing to the intrinsic stiffness
of double-stranded DNA: the repeats are so closely
spaced that the DNA could not bend sufficiently to form
the hairpin (Shore et al. 1981). Moreover, this mecha-
nism does not appear to operate in E. coli, even with
much longer inverted repeats (Lyu et al. 1999).

A second possibility is extrusion of a cruciform at the
inverted repeat region. This creates, for example, a po-
tential substrate that looks like a Holliday junction re-
combination intermediate. Cleavage of the intermediate
would result in two hairpin molecules that could be
processed further to the inverted structure shown in fig.
3B. Nicking of the single-stranded open area on op-
posite strands, invasion of the free end into the corre-
sponding region on another mtDNA, and, finally,
priming of replication or replicative repair by means of
the homology will result in an inversion. In this sce-
nario, there is a perfect match between the now-inverted
single strands in the repeat region, but the intervening
DNA (the seven-nucleotide region in our case) is not
complementary to itself and exists as a “bubble.” After
one round of replication, however, one of the two
daughter strands will fix the inversion. The DNA-me-
diated strand invasion event could arise from either a
double-stranded (i.e., cruciform) or a single-stranded
(i.e., hairpin) source. Since the ND1 gene, however, is
located in the “minor arc” of the genome, which does
not exist as single-stranded DNA during replication
(Clayton 1982), a mechanism based on extrusion of a
cruciform from double-stranded DNA is more likely.

Strand invasion can also be mediated by RNA. An
RNA-based mechanism is particularly attractive for the
inversion of mtDNA because precursor transcripts of
human mtDNA are processed to release the mature
transcripts (rRNAs, tRNAs, and mRNAs) by endoge-
nous nucleases (Clayton 1982; Attardi and Montoya
1983). In particular, tRNA genes are located between
most of the polypeptide-coding genes, and it is thought
that the mature mRNAs are released from the precursor
by cleavage of the single-stranded precursor transcript
at the tRNA/mRNA junctions, by RNAse P and en-
zymes similar to it. The “8-7-8” motif of the inverted
region is highly reminiscent of the inverted symmetry
in the stem-loop regions of tRNA genes. Thus, it may
be that, in rare cases, the inversion extrudes a hairpin
on the precursor transcript that is recognized by the
processing machinery and is cleaved (fig. 3C). Strand
invasion and repair during replication would be as
above.

Yet another possibility is repair after a double-
stranded break in DNA. For example, if double-
stranded, staggered cuts occurred at identical positions
within each repeat, the intervening DNA could be in-
verted at the complementary overhangs; ligation at the

nicks would then repair the breaks (fig. 3D). This type
of mechanism implies that the inverted repeats are
nicked in a sequence-specific manner, presumably by an
endonuclease with sequence specificity. In fact, the se-
quence of the inverted repeat (5-CCCCTTCG-3′) points
toward such a candidate nuclease—endonuclease G.
Endo G is a 29-kDa endonuclease that is targeted to
both the nucleus and to mitochondria (Cote and Ruiz-
Carrillo 1993; Gerschenson et al. 1995). This enzyme,
which has a nicking activity and which can cleave both
single- and double-stranded DNA, has a strong pref-
erence for the sequence (dC)n.(dG)n. In addition, a sec-
ond Endo G-like protein, 55 kDa in size, is also present
in mitochondria and has a preference for (dC)n.(dG)n
(Ikeda et al. 1996). Thus, the fact that there are four
consecutive Cs in the 8-bp inverted repeat (and a fifth
C immediately 5′ to these four) could render this se-
quence susceptible to staggered nicking. Furthermore,
since the repeats contain homopurine-homopyrimidine
tracts (8 bp at the 5′ repeat and 9 bp at the 3′ repeat)
they also have the potential to form bent DNA and to
extrude a single-stranded bubble in a triple-helical DNA
(Lyamichev et al. 1986). Since Endo G has a preference
for (dC)n over (dG)n in single-stranded DNA (Cote and
Ruiz-Carrillo 1993), Endo G cleavage at these repeats
would cut in the predicted staggered fashion.

Irrespective of the precise molecular etiology, intra-
genic inversions in mtDNA should now be added to the
already rich repertoire of pathogenic mutations in
mtDNA.
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